随着在充满挑战的环境中越来越需要多机器人探索未知区域的需求,需要有效的协作探索策略来实现此类壮举。可以部署基于边界的快速探索随机树(RRT)探索来探索未知的环境。然而,它的贪婪行为导致多个机器人探索收入最高的地区,从而导致勘探过程中大规模重叠。为了解决这个问题,我们提出了基于时间内存的RRT(TM-RRT)探索策略,用于多机器人在未知环境中执行强大的探索。它根据每个机器人的相对位置计算分配的每个边界的自适应持续时间,并计算边界的收入。此外,每个机器人都配备了由分配的边界和舰队共享的内存,以防止重复对同一边界的分配。通过模拟和实际部署,我们通过在25.0m x 540m(1350.0m2)区域完成勘探,展示了TM-RRT勘探策略的鲁棒性,而常规的RRT勘探策略则不足。
translated by 谷歌翻译
大多数现实世界情景的环境,如商场和超市始终变化。预构建的地图,不会占这些变化的内容容易过时。因此,有必要具有环境的最新模型,以促进机器人的长期运行。为此,本文呈现了一般终身同时定位和映射(SLAM)框架。我们的框架使用多个会话映射表示,并利用一个有效的地图更新策略,包括地图建筑,姿势图形细化和稀疏化。为了减轻内存使用情况的无限性增加,我们提出了一种基于Chow-Liu最大相互信息生成树的地图修剪方法。在真正的超市环境中,通过一个月的机器人部署全面验证了拟议的SLAM框架。此外,我们释放了从室内和户外变化环境中收集的数据集,希望加速在社区中的终身猛烈的Slam研究。我们的数据集可在https://github.com/sanduan168/lifelong-slam-dataset中获得。
translated by 谷歌翻译
In optimization-based approaches to inverse problems and to statistical estimation, it is common to augment the objective with a regularizer to address challenges associated with ill-posedness. The choice of a suitable regularizer is typically driven by prior domain information and computational considerations. Convex regularizers are attractive as they are endowed with certificates of optimality as well as the toolkit of convex analysis, but exhibit a computational scaling that makes them ill-suited beyond moderate-sized problem instances. On the other hand, nonconvex regularizers can often be deployed at scale, but do not enjoy the certification properties associated with convex regularizers. In this paper, we seek a systematic understanding of the power and the limitations of convex regularization by investigating the following questions: Given a distribution, what are the optimal regularizers, both convex and nonconvex, for data drawn from the distribution? What properties of a data source govern whether it is amenable to convex regularization? We address these questions for the class of continuous and positively homogenous regularizers for which convex and nonconvex regularizers correspond, respectively, to convex bodies and star bodies. By leveraging dual Brunn-Minkowski theory, we show that a radial function derived from a data distribution is the key quantity for identifying optimal regularizers and for assessing the amenability of a data source to convex regularization. Using tools such as $\Gamma$-convergence, we show that our results are robust in the sense that the optimal regularizers for a sample drawn from a distribution converge to their population counterparts as the sample size grows large. Finally, we give generalization guarantees that recover previous results for polyhedral regularizers (i.e., dictionary learning) and lead to new ones for semidefinite regularizers.
translated by 谷歌翻译
Recent neural radiance field (NeRF) representation has achieved great success in the tasks of novel view synthesis and 3D reconstruction. However, they suffer from the catastrophic forgetting problem when continuously learning from streaming data without revisiting the previous training data. This limitation prohibits the application of existing NeRF models to scenarios where images come in sequentially. In view of this, we explore the task of incremental learning for neural radiance field representation in this work. We first propose a student-teacher pipeline to mitigate the catastrophic forgetting problem. Specifically, we iterate the process of using the student as the teacher at the end of each incremental step and let the teacher guide the training of the student in the next step. In this way, the student network is able to learn new information from the streaming data and retain old knowledge from the teacher network simultaneously. Given that not all information from the teacher network is helpful since it is only trained with the old data, we further introduce a random inquirer and an uncertainty-based filter to filter useful information. We conduct experiments on the NeRF-synthetic360 and NeRF-real360 datasets, where our approach significantly outperforms the baselines by 7.3% and 25.2% in terms of PSNR. Furthermore, we also show that our approach can be applied to the large-scale camera facing-outwards dataset ScanNet, where we surpass the baseline by 60.0% in PSNR.
translated by 谷歌翻译
Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance degradation under domain shift due to the poor generalization ability, which limits the real-world applications. The domain shift mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from overfitting to source data and thus largely keeps the representation consistent between the source and general visual models. Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection, with different models, i.e., ConvNets and Transformer.
translated by 谷歌翻译
Existing state-of-the-art method for audio-visual conditioned video prediction uses the latent codes of the audio-visual frames from a multimodal stochastic network and a frame encoder to predict the next visual frame. However, a direct inference of per-pixel intensity for the next visual frame from the latent codes is extremely challenging because of the high-dimensional image space. To this end, we propose to decouple the audio-visual conditioned video prediction into motion and appearance modeling. The first part is the multimodal motion estimation module that learns motion information as optical flow from the given audio-visual clip. The second part is the context-aware refinement module that uses the predicted optical flow to warp the current visual frame into the next visual frame and refines it base on the given audio-visual context. Experimental results show that our method achieves competitive results on existing benchmarks.
translated by 谷歌翻译
Semantic segmentation in 3D indoor scenes has achieved remarkable performance under the supervision of large-scale annotated data. However, previous works rely on the assumption that the training and testing data are of the same distribution, which may suffer from performance degradation when evaluated on the out-of-distribution scenes. To alleviate the annotation cost and the performance degradation, this paper introduces the synthetic-to-real domain generalization setting to this task. Specifically, the domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns. To address these problems, we first propose a clustering instance mix (CINMix) augmentation technique to diversify the layouts of the source data. In addition, we augment the point patterns of the source data and introduce non-parametric multi-prototypes to ameliorate the intra-class variance enlarged by the augmented point patterns. The multi-prototypes can model the intra-class variance and rectify the global classifier in both training and inference stages. Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap and thus improve the generalization ability on real-world datasets.
translated by 谷歌翻译
Open world object detection aims at detecting objects that are absent in the object classes of the training data as unknown objects without explicit supervision. Furthermore, the exact classes of the unknown objects must be identified without catastrophic forgetting of the previous known classes when the corresponding annotations of unknown objects are given incrementally. In this paper, we propose a two-stage training approach named Open World DETR for open world object detection based on Deformable DETR. In the first stage, we pre-train a model on the current annotated data to detect objects from the current known classes, and concurrently train an additional binary classifier to classify predictions into foreground or background classes. This helps the model to build an unbiased feature representations that can facilitate the detection of unknown classes in subsequent process. In the second stage, we fine-tune the class-specific components of the model with a multi-view self-labeling strategy and a consistency constraint. Furthermore, we alleviate catastrophic forgetting when the annotations of the unknown classes becomes available incrementally by using knowledge distillation and exemplar replay. Experimental results on PASCAL VOC and MS-COCO show that our proposed method outperforms other state-of-the-art open world object detection methods by a large margin.
translated by 谷歌翻译
Mirror descent is a gradient descent method that uses a dual space of parametric models. The great idea has been developed in convex optimization, but not yet widely applied in machine learning. In this study, we provide a possible way that the mirror descent can help data-driven parameter initialization of neural networks. We adopt the Hopfield model as a prototype of neural networks, we demonstrate that the mirror descent can train the model more effectively than the usual gradient descent with random parameter initialization.
translated by 谷歌翻译
In this work, we focus on the problem of safe policy transfer in reinforcement learning: we seek to leverage existing policies when learning a new task with specified constraints. This problem is important for safety-critical applications where interactions are costly and unconstrained policies can lead to undesirable or dangerous outcomes, e.g., with physical robots that interact with humans. We propose a Constrained Markov Decision Process (CMDP) formulation that simultaneously enables the transfer of policies and adherence to safety constraints. Our formulation cleanly separates task goals from safety considerations and permits the specification of a wide variety of constraints. Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation. We devise a dual optimization algorithm that estimates the optimal dual variable of a target task, thus enabling safe transfer of policies derived from successor features learned on source tasks. Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
translated by 谷歌翻译